6 research outputs found

    Atom sieve for nanometer resolution neutral helium microscopy

    No full text
    Neutral helium microscopy is a new tool for imaging fragile and/or insulating structures as well as structures with large aspect ratios. In one configuration of the microscope, neutral helium atoms are focused as de Broglie matter waves using a Fresnel zone plate. The ultimate resolution is determined by the width of the outermost zone. Due to the low-energy beam (typically less than 0.1 eV), the neutral helium atoms do not penetrate solid materials and the Fresnel zone plate therefore has to be a free-standing structure. This creates particular fabrication challenges. The so-called Fresnel photon sieve structure is especially attractive in this context, as it consists merely of holes. Holes are easier to fabricate than the free-standing rings required in a standard Fresnel zone plate for helium microscopy, and the diameter of the outermost holes can be larger than the width of the zone that they cover. Recently, a photon sieve structure was used for the first time, as an atom sieve, to focus a beam of helium atoms down to a few micrometers. The holes were randomly distributed along the Fresnel zones to suppress higher order foci and side lobes. Here, the authors present a new atom sieve design with holes distributed along the Fresnel zones with a fixed gap. This design gives higher transmission and higher intensity in the first order focus. The authors present an alternative electron beam lithography fabrication procedure that can be used for making high transmission atom sieves with a very high resolution, potentially smaller than 10 nm. The atom sieves were patterned on a 35 nm or a 50 nm thick silicon nitride membrane. The smallest hole is 35 nm, and the largest hole is 376 nm. In a separate experiment, patterning micrometer-scale areas with hole sizes down to 15 nm is demonstrated. The smallest gap between neighboring holes in the atom sieves is 40 nm. They have 47011 holes each and are 23.58 μm in diameter. The opening ratio is 22.60%, and the Fresnel zone coverage of the innermost zones is as high as 0.68. This high-density pattern comes with certain fabrication challenges, which the authors discuss

    Subcutaneous anti-COVID-19 hyperimmune immunoglobulin for prevention of disease in asymptomatic individuals with SARS-CoV-2 infection: a double-blind, placebo-controlled, randomised clinical trialResearch in context

    No full text
    Summary: Background: Anti-COVID-19 hyperimmune immunoglobulin (hIG) can provide standardized and controlled antibody content. Data from controlled clinical trials using hIG for the prevention or treatment of COVID-19 outpatients have not been reported. We assessed the safety and efficacy of subcutaneous anti-COVID-19 hyperimmune immunoglobulin 20% (C19-IG20%) compared to placebo in preventing development of symptomatic COVID-19 in asymptomatic individuals with SARS-CoV-2 infection. Methods: We did a multicentre, randomized, double-blind, placebo-controlled trial, in asymptomatic unvaccinated adults (≥18 years of age) with confirmed SARS-CoV-2 infection within 5 days between April 28 and December 27, 2021. Participants were randomly assigned (1:1:1) to receive a blinded subcutaneous infusion of 10 mL with 1 g or 2 g of C19-IG20%, or an equivalent volume of saline as placebo. The primary endpoint was the proportion of participants who remained asymptomatic through day 14 after infusion. Secondary endpoints included the proportion of individuals who required oxygen supplementation, any medically attended visit, hospitalisation, or ICU, and viral load reduction and viral clearance in nasopharyngeal swabs. Safety was assessed as the proportion of patients with adverse events. The trial was terminated early due to a lack of potential benefit in the target population in a planned interim analysis conducted in December 2021. ClinicalTrials.gov registry: NCT04847141. Findings: 461 individuals (mean age 39.6 years [SD 12.8]) were randomized and received the intervention within a mean of 3.1 (SD 1.27) days from a positive SARS-CoV-2 test. In the prespecified modified intention-to-treat analysis that included only participants who received a subcutaneous infusion, the primary outcome occurred in 59.9% (91/152) of participants receiving 1 g C19-IG20%, 64.7% (99/153) receiving 2 g, and 63.5% (99/156) receiving placebo (difference in proportions 1 g C19-IG20% vs. placebo, −3.6%; 95% CI -14.6% to 7.3%, p = 0.53; 2 g C19-IG20% vs placebo, 1.1%; −9.6% to 11.9%, p = 0.85). None of the secondary clinical efficacy endpoints or virological endpoints were significantly different between study groups. Adverse event rate was similar between groups, and no severe or life-threatening adverse events related to investigational product infusion were reported. Interpretation: Our findings suggested that administration of subcutaneous human hyperimmune immunoglobulin C19-IG20% to asymptomatic individuals with SARS-CoV-2 infection was safe but did not prevent development of symptomatic COVID-19. Funding: Grifols
    corecore